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Percolation in a lattice model of a microemulsion
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In this paper we investigate the properties of a three-component, three-dimensional lattice model of self-
assembly in the context of percolation. The percolating regions in the three-component phase-diagram are
mapped out and the different kind of percolating regions are discussed. The growth and scaling of clusters
leading to percolation are investigated and the scaling expoeaitsl y are determined to be 0.373 and 1.79,
respectively, which are identical to the noninteracting three-dimensional percolation exponents. Finally, per-
colation in the lattice model is discussed in terms of micelle and microemulsion structure, as defined by size
and spectroscopic method$1063-651X96)12411-9

PACS numbefs): 82.70.Kj, 64.60.Ak, 83.70.Hq

Percolation is a branch of statistical physics that has apthe directionality of an amphiphile. The number and type of
plications in many diverse fields, including conductivity terms are the minimum needed to see interesting phases, that
[1,2], diffusion [3], and even studies of forest firg$]. Lat-  is, lamellar, crystalline, and disordered. In general, more
tice models are particularly useful for studying percolation,complex terms can be added in order to model more complex
as the critical concentration can be well-characterized by usphases, but since percolation is most clearly illustrated in the
ing the regularity of the lattice. There are well-defined Scal-microemu|Sion(disordereaj phase, this simple set of terms
ing relations for clusters of sites near the percolation transisuffices. It is not merely a decorated Ising lattice; it is a
tion and these relations seem to be univefSal hybrid model constructed from Ising- and Heisenberg-like

Percolation and cluster growth have recently been studiegpin variables.
for lattice models having interactions, such as the ISing The parameters were chosen so that oil and water have
model[6,7] and Potts mode]8,9]. As a general rule, while jnversion symmetry and so that a continuous pathway be-
interactions get stronger, the number of components increasgeen the oil and water and microemulsion phases is created.
or the dimensionality increases in a given system, the percoye use the parameters;=5, c,=3/2, c;=—23/4, and
lation concentrationp. for a given component decreases for ¢,= —1/3, which were shown to have this property in Ref.
all percolation systemfsl0]. [11]. There are no equilibrium phase transitions across this

We investigated percolation and cluster growth in a threepjl-water single-phase channel in the phase diagram. This
component lattice model of microemulsion with the Hamil- particular choice of parameters includes a microemulsion
tonian[11] phase over a large area of temperature or composikan
1).

Metropolis Monte Carlo simulations were used in this
study. Both canonical and grand canonical simulations utiliz-
ing periodic boundary conditions were used, with the canoni-

+040202 ]_2 (szer ). 1) cal simulatiqns used _to collect clust_er statis_tics. The '_[rial
nen n noon moves consisted of single changes in the discrete variable
(grand-canonical runsor pairwise exchangegcanonical
Our motivation is to investigate the microscopic structure ofcaseg The continuous spins were updated separdtely.
clusters as they build up into micelles and microemulsionFor these series of simulations, system size was generally
and also to determine if there is a connection between peheld at 24< 24X 24 and the number of Monte Carlo lattice
colation in this model and the equilibrium properties. Wepasses was typically 35 000, including at least 20 000 equili-
describe the microemulsion system using an oil-waterbration lattice passes. A lattice pass is defined as one at-
amphiphile model(This is a Potts-Heisenberg system, wheretempted Ising spin flip for every site on the lattice, together
the Ising variables are allowed to take on three vajuBise  with 10—20 continuous spin updates. Some simulations were
Hamiltonian used for the following percolation investiga- run with 32x< 32X 32 or 40x 40X 40 system sizes and longer
tions is a nearest-neighbor sum: thg are coupling con- run times in order to give a rough check of finite-size effects,
stants, theo,, are the discrete variables at siteAn is the  though no dedicated finite-size scaling study,13 was
lattice difference vector, ang,=(1—0?)S, is the unit vec- done.
tor orientation at the amphiphile sites, is a three- A series of simulations was run in order to determine the
dimensional vector spin. percolation thresholds of the system, as well as the micro-

This general model has been the basis for many studies structure of the clusters as they grew to percolating size. The

amphiphilic systems. The vector variable is used to represemercolation thresholds investigated included amphiphile per-

1
H= _2 [ClO'nAn'S,]/'}_Cz(Tﬁ(An'Sqr)z"_ CSO'nO'n/
n,n
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Amphiphile areas determined in RefL1]. The percolation lines for dif-
ferent system sizes did not deviate more than a few percent.
As the percolation lines move towards two-phase and struc-
tured regions, such as the lamellar or microemulsion region,
determination ofp, becomes difficult, if not impossible due
to the large-scale fluctuations near phase transitions. Thus, in
the lower part of the microemulsion percolation region,
phase separation competes with uniform percolation, and the
two-dimensional lamellar structure serves to prevent three-
dimensional percolation near the middle of the phase dia-
gram.

The areas between the microemulsion and the amphiphile
percolation phases can be identified as complex ordered re-
gions. For example, consider the region of the phase diagram
where oil is the solvent and water or amphiphile is the solute.
Here the water and amphiphile were found to percolate when

Water 5% 0% 5% oil considered together as constituting a cluster, but not singly.
That is, no separately continuous water or amphiphile chan-

FIG. 1. Percolation phase diagram: three-component composi€ls were found. In experimentally observed mixtures, cylin-
tion diagram for the lattice model of microemulsion. Upper solid drical micelles are often seen in this region, and while these
lines correspond to amphiphile percolating in oil or water; lower structures are difficult to categorize in the lattice model,
solid lines correspond to the bicontinuous percolation region.  some evidence as to their existence was found. The ratios of

the calculated moments of inertia of the cluster sizes were
colating in an oil-water background and water-amphiphilegpproximately 2.5:2.1:1. With information such as this, we
clusters percolating in oil. That is, clusters were defined agonclude that on a trajectory from this region to the micro-
consisting of either amphiphile in oil or amphiphile plus wa- ¢mysion region, the connected amphiphile-surrounded water
ter in oil. Th|§ distinction is necessary, as the results may bg peg gradually lengthen and bend into channels, until the
somewnhat dlfferer_lt. ) water percolates throughout the oil. That no drastic change in

d ¢ of the distributi : infinite clust Structure occurs is shown by the ratios of the principal mo-
seconc moment of the distribution of noninfinite: ClUSLers, ., o s of the large noninfinite clustefsizes neat?) as the

5% 25%

bicontinuous

defined by threshold is crossed, although there seems to be some effect.
Both amphiphile clusters and water clusters show monotonic
S=E WS, 2 growing or shrinking of the ratios of the principal moments.
s But, although the sizes of the clusters change, the relative
where shapes do not. The average principle moments of the clusters

near sizel? decrease sharply ai;, while the ratiol,/I,

remains monotonic. A trajectory that increases the am-

= 3 phiphile concentration seems to cause the clusters to become
E Nes connected together through the amphiphile layers on the
s outer portion of the clusters.

The microemulsion region was found to be bicontinuous
and ns is the number of clusters of sizg diverges in an  only in the oil and water components. Other studies define
infinite system. Just above. and for any higher concentra- microemulsion with either bi- or tricontinuityl4]. Nowhere
tion p, the amount of clustering sites contained in the infinitein our phase diagram was a stable tricontinuous phase found;
cluster as a fraction of the total volume of the infinite clusterwe use the bicontinuous definition. The area where a tricon-

tinuous phase may have been expected is where the two sets
_ _ of percolation lines meet, but this occurs in the lamellar or
P_Es [ns(pe)—ns(pls @ two-phase region and that structured phase seemingly exerts
too strong an influence on the configurations to observe a
becomes nonzero. This is defined as the strefytbf the  tricontinuous phase. It should be noted experimental studies
infinite cluster. Exactly ap.., P is zero in an infinite system. show percolation behavior in microemulsions beginning at
We also used the percolation fractibn defined as that frac- about 7% by volume amphiphile5]. This does not neces-
tion of configurations stored by the simulation that containsarily mean that the amphiphile is percolating in the micro-
clusters that connect to themselves across the periodiemulsion, only that the oil and/or water species are, since the
boundary in at least one dimension. A plot lfversusp diffusion and conductivity measurements are made on the oil
shows a very rapid increase at the transition; in an infiniteand water phases.
system it would appear as a step function. With these mea- We have investigated the scaling behavior of the clusters
sures, the percolation threshold can be accurately detegenerated by the lattice model of microemulsion and how
mined. The percolation phase diagram is presented in Fig. Ihese results compare with other lattice models. The scaling
Included in the diagram are the two-phase and ordered-phasssumption for clusters of sizeat a concentratiop is
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ns(p)=s""F((p—pc)s’), 5 35 , , : ,
where the function” is specific to a particular model, but the 30 b e + B=179 -
exponentsr and o are universal. The exponent can be A &
assumed from three-dimensional models or determined by 25 L i
the relations between the other scaling exponddis): X g
B=(7—2)/o andy=(3—7)/o. The exponent® andy are o0k ° .
defined through the relationsSx|p—p.~* and P log,, 3 s*n, A %@Lé
«(p—pe)?. P is the strength of the infinite cluster, defined 15 | otx -
in Eq. (4), andS is the second moment of the finite cluster A X Oy
distribution, defined by Eq€2) and(3). 1.0 | % +

The scaling assumption needs to be validated in two re-
gions: atp near and away fronp.. At p=p., we have 0.5 | AN
ngs~s~ " and thus the exponentmay be determined from a
regression. Ap away fromp,, the ratio 0.0 — : : :
-2.4 -2.0 -1.6 0 -1.2 -0.8
n(p) 10810 P—DPc
vs(p)= n(p.) =F(p—pc)s’) (6)
stPc FIG. 2. log-log plot of the second moments of noninfinite clus-

ters. The upper points correspond to clusters almyvewhile the

ill fall al th Identical btai ower points are belovp.. Note that this is the inverse of second-
willtall along the same curve. ldentcal curves were obtaineq,, ;o results for random percolation. Different symbols corre-

whether or not the amPh'ph"? Concen_trat'on _Var'ed' Thespond to differing trajectories. Squares represent results where both
value o=0.48 for three-dimensional noninteracting percola-,mphiphile and water concentrations were varied in an oil solvent;

tion was used for these plots. We believe this is valid; thepe other symbols represent trajectories where only the amphiphile
effects of an incorrect are clearly seen as spreading of the concentrations were varied.

individual points about the predicted curve versus mere scat-
ter of data away from the “correct” value.

A plot of the distribution of second moments gives two
sets of points, corresponding to those clusters above and b
low the transition. The post-transition clusters are smalle
than those below. This is the opposite of the behavior fo
noninteracting percolation clusters. Exactly why this is is
unknown; it may be a “critical-micelle-concentration-like”
effect due to interactions. The threshold can be determined
a high degree of accuracy by adjustipg until the two
slopesy are parallel. In the same wag, can be determined

is plotted asF(z) versusz=|p—p¢|s” and the different data

concentration, but the data still fit the scaling assumption
well; our values for8 and y were not significantly different
for the differing trajectories. This bears some consideration,
bs it implies that the cluster growth is the same no matter
hat the composition of the clusters. The composition does
seem to affect exactlwherepercolation happens, that is, at
what concentratiop percolation happens: The percolation
fhes do not vary greatly from a constap{,/p, value of
about 0.7. This would seem to indicate a constant micelle

telv. A i t olot i ted in Fi 2size and microemulsion developing from the increasing num-
accurately. A scaiing exponent plot 1S presented In Fg. 2pep of micelles bumping into each other. The data in Fig. 2

Notice that although the data appear to be scattered, the v how points from two composition cases, that is, holding the
ues of slopes drawn through each set of points are very close. ' '

The values we obtain3=0.373 andy=1.79, are in agree-

ment with the values of 0.4 and 1.80 tabulated for three- 1.0 T T T T |

dimensional noninteracting percolation. 09 L i
The apparent composition of the clusters was considered NS

carefully. Should a cluster be defined to consist of only am- 0.8 | g Qg -

phiphile or water in oil? Or should a cluster be defined to

consist of both water and amphiphile, as in a micelle? Non- 0.7 g @ 7]

interacting polychromatic percolation is simpler, as the mul- S(g) o6} g ® _

ticomponent problem can be broken into two species: one or ®

more percolating species, or solute, and all the other species 0.5 g ® o T

as the solvent. Introducing interactions into a model of 04 - @ o S

course changes this. If three speciesW, andO are con- ' @ g g

sidered, andA is the solvent(that is, considered to be the 0.3 g ﬁ

species in excegwith p=W+ O, there are then two possi- 09 . . ' | .

bilities. For a given concentratiop, one or both oW and 0.0 20 40 6.0
O may percolate in a given region, and this percolation may q(27/a)
or may not be dependent upon different concentratddhs

andO. In other words, percolation may or may not depend g, 3. Scattering functio(k) from simulations. Triangles are
simply onp, but also on the composition @. If this were  pelow, squares are very near, and diamonds are above the percola-
the case, it would manifest itself in different expongfitand  tion concentrationp, at a 10% amphiphile concentration. The

v for different components ob. In our case, we find more circles correspond to three concentratignéor a 20% amphiphile
statistical error for a trajectory where two species vary inconcentration.

8.0 10.0 120
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water species constant and also varying both “solute” speever the lattice directions. This assumption of spherical sym-
cies. Points from all trajectories were used to obtain the valmetry ignores any lattice effects, but has been shown to give
ues for the exponents. satisfactory result$11]. The S(k) were calculated at two

Is it possible to somehow define the microemulsion regiorconcentrations of amphiphile across the percolation thresh-
of the phase diagram through the percolation thresholdsold in order to determine whether the nonzero peak is a pure
Some independent measure of what constitutes a microemutoncentration effect or a percolation effect. At amphiphile
sion is needed, and though there is no definitive answeg€oncentration of 10%, there was no peak kor0. At am-
there is some general agreement. Previous mddglslg ph_|ph_|le concentratlon_of 20%, a peak emerges, but it only
and experimental resul{d9] have used the Fourier trans- comc_ldes gene_rally with the percolation threshol(_j and no
form S(k) of the correlation functiomy(r) as evidence of a Certain conclusions can be drawn about any possible corre-
microemulsion phase. Specifically, the existence of a peak tions. Seel Figure 3. (;I’hese results W?“T. O.bti?]'nedd ffo'_”” a
nonzerok, giving rise to two characteristic length scales, is 2x 32X 32 lattice in order to not severely limit the domain
generally accepted as microemulsion signature. We investP'2€S of the oil and water regions.
gated the possible correlation between the emergence of a We wish to thank helpful discussions with C.J. Mundy,
peak in theS(k) and the onset of percolation. A discrete Z. Kurtovic, Y. Levin, and A. Granik. Much of this work
Fourier transform of the site-site correlation functionwas done while the authors were at the University of Cali-
{pi(0)p;(n)) for the water sites was calculated by averagingfornia at Berkeley, Department of Chemistry.
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